SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the University of Toronto using a Nonius KappaCCD diffractometer purchased with funds from NSERC (Canada). RMG thanks EPSRC (UK) for financial support.

[^0]
References

Baksi, P. K., Linden, A., Vincent, B. R., Roe, S. P., Adhikesavalu, D., Cameron, T. S. \& Knop, O. (1994). Can. J. Chem. 72, 1273-1293.
Bock, H., Vaupel, T. \& Schodel, H. (1997). J. Prakt. Chem. 339, 26-37.
Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. \& Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156-3166.

Brock, C. P. \& Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.
Byrne, J. J., Chavant, P. Y., Averbuch-Pouchot, M.-T. \& Vallée, Y. (1998). Acta Cryst. C54, 1154-1156.

Chen, X.-M., Luo, G.-B., Tong, M.-L. \& Zhou, Z.-Y. (1996). Acta Cryst. C52, 1727-1729.
Ferguson, G. (1999). PRPKAPPA. A WordPerfect-5.l Macro to Formulate and Polish CIF Format Files from the SHELXL97 Refinement of CCD Data. University of Guelph, Canada.
Ferguson, G., Bell, W., Coupar, P. I. \& Glidewell, C. (1997). Acta Cryst. B53, 534-543.
Ferguson, G., Coupar, P. I. \& Glidewell, C. (1997). Acta Cryst. B53, 513-520.
Ferguson, G., Glidewell, C., Gregson, R. M., Meehan, P. R. \& Patterson, I. L. J. (1998). Acta Cryst. B54, 151-161.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Henschel, D., Moers, O., Blaschette, A. \& Jones, P. G. (1997). Acta Cryst. C53, 1877-1879.
Jiang, T., Lough, A., Ozin, G. A. \& Bedard, R. L. (1998). J. Mater. Chem. 8, 733-741.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lavender, E. S., Ferguson, G. \& Glidewell, C. (1999). Acta Cryst. C55, 430-432.
MacLean, E. J., Glidewell, C., Ferguson, G., Gregson, R. M. \& Lough, A. J. (1999). Acta Cryst. C55, 1867-1870.

Mak, T. C. W., Yip, W.-H. \& Book, L. (1984). J. Crustallogr. Spectrosc. Res. 14, 457-465.
Meehan, P. R., Ferguson, G., Glidewell, C. \& Patterson, I. L. J. (1997). Acta Cryst. C53, 628-631.
Nimmo, J. K. \& Lucas, B. W. (1976). Acta Cryst. B32, 348-353.
Nonius (1997). KappaCCD Server Software. Windows 3.11. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. Molecular Geometry and Graphics Program. Version of July 1999. University of Utrecht, The Netherlands.
Takama, M., Yasui, M., Harada, S., Kasai, N., Tanaka, K. \& Toda, F. (1988). Bull. Chem. Soc. Jpn, 61, 567-568.

Wilson, A. J. C. (1993). Acta Cryst. A49, 795-806.
Yasui, M., Yabuki, T., Takama, M., Harada, S., Kasai, N., Tanaka, K. \& Toda, F. (1989). Bull. Chem. Soc. Jpn, 62, 1436-1445.
Yokozeki, A. \& Kuchitsu, K. (1971). Bull. Chem. Soc. Jpn, 44, 72-77. Zhao, D., Lapido, F. T., Braddock-Wilking, J., Brammer, L. \& Sherwood, P. (1996). Organometallics, 15, 1441-1445.

Acta Cryst. (1999). C55, 2140-2142

Network of $\mathbf{C}-\mathbf{H} \cdots \mathbf{O}$ interactions in 4-benzyloxy-3-methoxybenzaldehyde (vanillin benzyl ether)

Roger E. Gerkin

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA. E-mail: gerkin@chemistry. ohio-state.edu
(Received 24 May 1999: accepted 2 July 1999)

Abstract

The title aldehyde, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$, crystallized in the centrosymmetric space group $P 2_{1} / c$ with one molecule in the asymmetric unit. Six significant intermolecular C$\mathrm{H} \cdots \mathrm{O}$ interactions have $\mathrm{C} \cdots \mathrm{O}$ distances ranging from 3.405 (2) to $3.802(2) \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angles ranging from 121 to 162°. These six intermolecular interactions link a molecule directly to six neighbors and form a three-dimensional network. The dihedral angle between the best-fit planes of the benzene rings within a molecule is $78.1(1)^{\circ}$. The dihedral angle between the carbox-aldehyde-group plane and the best-fit plane of the ring to which it is attached is $3(1)^{\circ}$.

Comment

This report on the title aldehyde, (I), is one of a series on hydrogen bonding in organic solids. It follows our reports on two other aldehydes with additional O atoms as potential acceptors, dibenzofuran-4-carboxaldehyde (Fitzgerald et al., 1991) and 2,2'-dihydroxy-5,5'-di-methoxybiphenyl-3, 3^{\prime}-dicarboxaldehyde [hereafter, (II)] (Gerkin, 1999). (I) crystallized in the centrosymmetric space group $P 2_{1} / c$ with one molecule in the asymmetric unit. The refined molecule and the labeling scheme are shown in Fig. 1. Six intermolecular C-H $\cdots \mathrm{O}$ interactions have parameter values falling well within

(I)
the criteria of Taylor \& Kennard (1982) for significantly attractive interactions; a recent comprehensive analysis of such interactions is given by Steiner \& Desiraju (1998). Geometric details for these are given in Table 2. Altogether these interactions link a molecule directly to six neighbors; in (II), 11 intermolecular interactions link a molecule directly to eight neighbors. The results
of graph-set analysis (Bernstein et al., 1995) of these six interactions, labeled $a-f$ for this purpose in the order of their appearance in Table 2, are given in Table 3. (Second-level descriptors in extended form for a, c and d would include, in appended brackets, the descriptors for the corresponding first-level rings.) Among these 21 patterns, 15 are chains and six are rings. The chains propagate variously along [010], [001], [101] and [20 $\overline{3}$], generating a three-dimensional network. If inclusion of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions is restricted to the two having $\mathrm{H} \cdots \mathrm{O}$ distances less than the sum of the corresponding Bondi (1964) van der Waals radii (eliminating entries $c-f$ in Table 3), chains of only types [010] and [203] appear and the network becomes twodimensional. Interestingly, each of the three first-level rings occurs about a center of symmetry. It may be noted that if interaction c, the weaker component of a bifurcated arrangement involving H12, is excluded, the remaining interactions still form a three-dimensional network. A packing diagram of the structure is presented in Fig. 2.

Fig. 1. ORTEPII (Johnson, 1976) drawing of (I), showing the labelling scheme. Displacement ellipsoids are drawn for 50% probability for non-H atoms; spheres of arbitrary small radius depict H atoms.

Fig. 2. ORTEPII (Johnson, 1976) packing diagram of (I). Displacement ellipsoids are drawn for 20% probability for non-H atoms; spheres of arbitrary small radius depict H atoms.

The benzene rings in (I) are nearly planar, the maximum deviation of any of their atoms from the best-fit planes describing them being 0.012 (2) and
0.004 (2) Å, while the average deviations are 0.006 (2) and 0.003 (2) \AA. These values are quite similar to the corresponding maximum and average deviations found, e.g. in the above-cited dialdehyde, (II): 0.014 (2) and 0.007 (2) \AA, and 0.008 (2) and 0.005 (2) \AA, respectively. The dihedral angle between the best-fit benzene-ring planes within a molecule in (I) is 78.1 (1) ${ }^{\circ}$. In (I), the dihedral angle between the plane of the carboxaldehyde group and the plane of the ring to which it is attached is $3.0(10)^{\circ}$, which may be compared with the corresponding values for the two carboxaldehyde groups of (II): 4.7 (10) and $2.6(10)^{\circ}$, and with that for the other cited carboxaldehyde, $3.2(7)^{\circ}$.
Selected distances and angles are given in Table 1. All distances and angles fall within normal ranges. Excluding pairs of atoms involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, the closest intermolecular approaches are between C7 and $\mathrm{C}^{\text {vi }}$ [symmetry code: (vi) $-x, 2-y, 2-z$], and are $0.06 \AA$ less than the corresponding Bondi radius sum.

Experimental

The title aldehyde was obtained from a sample in Dr D. J. Hart's chemical collection as a pale yellow chunk. This was cut to provide the experimental sample. This compound is commercially available from, e.g., Lancaster Synthesis Inc.

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
$M_{r}=242.27$
Monoclinic
$P 21 / c$
$a=13.035$ (1) \AA
$b=11.600$ (1) \AA
$c=8.668(1) \AA$
$\beta=81.230(9)^{\circ}$
$V=1295.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.242 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=16.0-17.4^{\circ}$
$\mu=0.086 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Cut chunk
$0.35 \times 0.31 \times 0.31 \mathrm{~mm}$
Pale yellow

Data collection
AFC-5S diffractometer
ω scans
Absorption correction: none
3115 measured reflections
2991 independent reflections
1590 reflections with
$I>2 \sigma I$
$R_{\text {int }}=0.023$
$\theta_{\max }=27.56^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 15$
$l=-11 \rightarrow 11$
6 standard reflections every 150 reflections intensity variation: $\pm 2.2 \%$ (average maximum relative intensity)

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma_{\mathrm{cs}}^{2}+(0.006 I)^{2}\right]$
$R(F)=0.050$
$w R\left(F^{2}\right)=0.068$
$S=1.61$
$(\Delta / \sigma)_{\text {max }}=0.0004$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

2988 reflections
Extinction correction: none 167 parameters
H atoms treated by a mixture of independent and constrained refinement

Scattering factors from Stewart et al. (1965) (H) and Creagh \& McAuley (1992) (C, O)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 7$	$1.212(2)$	$\mathrm{O} 3-\mathrm{C} 4$	$1.358(2)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.366(2)$	$\mathrm{O} 3-\mathrm{C} 9$	$1.442(2)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.419(2)$		
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 8$	$117.5(1)$	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 9$	$117.1(1)$

Table 2. Intermolecular $C-H \cdots O$ interactions $\left(\AA{ }^{\circ},^{\circ}\right)$
No s.u.'s are given for quantities involving fixed H atoms.

$D-\mathrm{H} \cdots \cdot A$	D-H	H \cdots A	D... A	$D-\mathrm{H} \cdots A$
C12-H12.. ${ }^{\text {O }}{ }^{1}$	0.98	2.58	3.460 (2)	150
C6-H6..O1"	0.98	2.60	3.420 (2)	142
$\mathrm{C} 12-\mathrm{H12} \cdots \mathrm{O}^{\text {i }}$	0.98	2.79	3.405 (2)	121
	0.98	2.79	3.570 (2)	137
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{Ol}^{\text {iv }}$	0.98	2.83	3.778 (2)	162
C8-H8A…O2	0.98	2.89	3.802 (2)	154
Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; $-x, 2-y, 1-z$; (iv) $x, \frac{5}{2}-y, z-\frac{1}{2}$; (v) $x, \frac{5}{2}-y, \frac{1}{2}+z$.				

Table 3. Basic first- and second-level graph-set descriptors involving interactions designated a-f in order as given in Table 2

a	$\stackrel{a}{R_{2}^{2}(18)}$	$\stackrel{b}{C_{2}^{2}(18)}$	$\stackrel{c}{R_{1}^{2}(5)}$	$\stackrel{d}{C_{\frac{1}{2}}^{\frac{2}{1}}(12)}$	$C^{e}{ }_{2}^{2}(15)$	${ }_{C_{2}^{1}(12)}^{f}$
b		C (5)	$C_{2}^{2}(17)$	$C_{2}^{1}(8)$	$R_{\frac{1}{2}}^{\frac{1}{2}}$ (18)	$R_{4}^{\frac{1}{4}}$ (28)
c			$R_{2}^{2}(12)$	$C^{\frac{2}{2}}$ (13)	C_{2}^{2} (18)	$C_{2}^{2}(15)$
d				R_{2}^{2} (18)	$C_{\text {e }}^{1}(9)$	$C_{2}^{2}(14)$
e					C (8)	$C_{2}^{2}(9)$
f						C (3)

The aldehyde H atom (H7) was refined isotropically [C7$\mathrm{H} 7=1.03(2) \AA$]; all other H atoms were allowed for as riding atoms.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN and PLATON (Spek, 1990).

I acknowledge with pleasure the provision of the sample by Dr David J. Hart and my use of the departmental X-ray crystallographic facility, which is supervised by Dr J. C. Gallucci. The diffractometer system was purchased with funds provided in part by an NIH grant.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1220). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew: Chem. Int. Ed. Engl. 34, 1555-1573.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

Creagh, D. C. \& McAuley, W. J. (1992). International Tables for Crustallography, Vol. C. pp. 219-222. Dordrecht: Kluwer Academic Publishers.
Fitzgerald, L. J., Gallucci, J. C., Gerkin, R. E. \& Rawal, V. H. (1991). Acta Cryst. C47, 2134-2137.
Gerkin, R. E. (1999). Acta Cṛst. C55, 1176-1179.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-1. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Spek. A. L. (1990). Acta Crust. A46, C-34
Steiner, T. \& Desiraju, G. R. (1998). J. Chem. Soc. Chem. Commun. pp. 891-892.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phỵs. 42, 3175-3187.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

Acta Cryst. (1999). C55, 2142-2145

Hydrogen bonding and $\mathbf{C}-\mathbf{H} \cdots \mathbf{O}$ interactions in bis(4-carboxyquinolinium) sulfate monohydrate

Allison J. Dobson and Roger E. Gerkin
Department of Chemistry; The Ohio State Universitw, Columbus, Ohio 43210, USA. E-mail: gerkin@chemistry: ohio-state.edu

(Received 10 June 1999; accepted 3 August 1999)

Abstract

The title substance, $2 \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{2}^{+} \cdot \mathrm{SO}_{4}^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$, crystallized in the centrosymmetric space group $P \overline{1}$ with two organic cations, one sulfate ion and one water molecule in the asymmetric unit. Seven leading intermolecular hydrogen bonds are formed in this structure: two N $\mathrm{H} \cdots \mathrm{O}$ bonds have $\mathrm{N} \cdots \mathrm{O}$ distances of 2.592 (3) and 2.650 (3) \AA, while five $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds have $\mathrm{O} \cdots \mathrm{O}$ distances ranging from 2.493 (2) to 3.072 (3) \AA. All of the potential donors are involved in these bonds, but three of the potential nine acceptors are not. The H and O atoms in all these hydrogen bonds are ordered. The hydrogen bonds form a three-dimensional network. In addition, there are nine significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions for which the $\mathrm{H} \cdots \mathrm{O}$ distances are less than the corresponding van der Waals radii sum. The dihedral angle between the best-fit quinoline core plane and the carboxyl group plane is $35.2(3)^{\circ}$ for one of the organic cations and $6.4(4)^{\circ}$ for the other.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1331). Services for accessing these data are described at the back of the journal.

